学习了解数据仓库中的分层概念


=Start=

缘由:

以下关于数据仓库分层的内容,基本都是引用文章【数据仓库–通用的数据仓库分层方法】中的内容,在你对大公司的数据仓库分层的逻辑和大体方式方法有所了解之后,你就可以更好的理解我这里所说的——异常分析中的离线行为部分,建议从 dim_employee 开始,主要是因为:

  • (对于因为某些原因隐藏了IM中的组织架构信息展示的公司)查看员工组织架构信息,除了部分团队可能有工作场景,绝大部分情况下是可疑的,违规概率较高;
  • 可以通过 dim_employee 看看数据平台对于表的命名方式有没有治理,可以从侧面体现出这个公司的数据治理水平,在你具体做分析之前其实就可以有一个大概的预期了

dim_employee / dim_department

正文:

参考解答:

0x01 为什么要进行数据分层?

数据分层并不能解决所有的数据问题,但是,数据分层却可以给我们带来如下的好处:

  • 清晰数据结构:每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解
  • 减少重复开发:规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算
  • 统一数据口径:通过数据分层,提供统一的数据出口,统一对外输出的数据口径
  • 复杂问题简单化:将一个复杂的任务分解成多个步骤来完成,每一层解决特定的问题

0x02 一种通用的数据分层设计

为了满足前面提到数据分层带来的好处,我们将数据模型分为三层:数据运营层(ODS)、数据仓库层(DW)和数据应用层(APP)。简单来讲,我们可以理解为:ODS层存放的是接入的原始数据,DW层是存放我们要重点设计的数据仓库中间层数据,APP是面向业务定制的应用数据

一、数据运营层:ODS(Operational Data Store)

“面向主题的”数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。

一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。

二、数据仓库层:DW(Data Warehouse)

数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。DW层又细分为 DWD(Data Warehouse Detail)层、DWM(Data WareHouse Middle)层和DWS(Data WareHouse Servce)层。

  1. 数据明细层:DWD(Data Warehouse Detail)

该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。

另外,在该层也会做一部分的数据聚合,将相同主题的数据汇集到一张表中,提高数据的可用性,后文会举例说明。

  1. 数据中间层:DWM(Data WareHouse Middle)

该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。

直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。

  1. 数据服务层:DWS(Data WareHouse Servce)

又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。

一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。

在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。

三、数据应用层:APP(Application)

在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、PostgreSql、Redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。

四、维表层:DIM(Dimension)

最后补充一个维表层,维表层主要包含两部分数据:

高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。

低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。

在数据仓库和商业智能(BI)领域,维度表(Dimension Table)是用于存储描述性信息的数据结构,这些信息通常用来提供关于事实表(Fact Table)中数据的上下文。维度表中的数据往往具有较高的文本属性或分类性质,如日期、地点、产品类别等,并且不会频繁更新。它们与事实表一起构成星型模式或雪花模式的核心组成部分。

0x03 举个栗子

趁热打铁,举个栗子说明一下,如下图,可以认为是一个电商网站的数据体系设计。我们暂且只关注用户访问日志这一部分数据。

在ODS层中,由于各端的开发团队不同或者各种其它问题,用户的访问日志被分成了好几张表上报到了我们的ODS层。

为了方便大家的使用,我们在DWD层做了一张用户访问行为天表,在这里,我们将PC网页、H5、小程序和原生APP访问日志汇聚到一张表里面,统一字段名,提升数据质量,这样就有了一张可供大家方便使用的明细表了。

在DWM层,我们会从DWD层中选取业务关注的核心维度来做聚合操作,比如只保留人、商品、设备和页面区域维度。类似的,我们这样做了很多个DWM的中间表

然后在DWS层,我们将一个人在整个网站中的行为数据放到一张表中,这就是我们的宽表了,有了这张表,就可以快速满足大部分的通用型业务需求了。

最后,在APP应用层,根据需求从DWS层的一张或者多张表取出数据拼接成一张应用表即可。

备注:例子只是为了简单地说明每一层的作用,并不是最合理的解决方案,大家辩证地看待即可。

0x04 技术实践

既然谈到了数据分层,那不同的层次中会用到什么计算引擎和存储系统呢,本节来简单分享一下。

数据层的存储一般如下:

Data Source:数据源一般是业务库和埋点,当然也会有第三方购买数据等多种数据来源方式。业务库的存储一般是Mysql 和 PostgreSql。

ODS 层:ODS 的数据量一般非常大,所以大多数公司会选择存在HDFS上,即Hive或者Hbase,Hive居多。

DW 层:一般和 ODS 的存储一致,但是为了满足更多的需求,也会有存放在 PG 和 ES 中的情况。

APP 层:应用层的数据,一般都要求比较快的响应速度,因此一般是放在 Mysql、PG、Redis中。

0x05 思考

如同《漫谈数据仓库和范式》一文在最后思考数据仓库和范式之间的关系一样,本文也将思考和总结一下数据分层的原则是什么?为什么要这样分层?每层之间的界限又是什么?

我个人从这几个角度来理解数据分层的划分:

从对应用的支持来讲,我们希望越靠上层次,越对应用友好。比如APP层,基本是完全为应用来设计的,很易懂,DWS层的话,相对来讲就会有一点点理解成本,然后DWM和DWD层就比较难理解了,因为它的维度可能会比较多,而且一个需求可能要多张表经过很复杂的计算才能完成。

从能力范围来讲,我们希望80%需求由20%的表来支持。直接点讲,就是大部分(80%以上)的需求,都用DWS的表来支持就行,DWS支持不了的,就用DWM和DWD的表来支持,这些都支持不了的极少一部分数据需要从原始日志中捞取。结合第一点来讲的话就是:80%的需求,我们都希望以对应用很友好的方式来支持,而不是直接暴露给应用方原始日志

从数据聚合程度来讲,我们希望,越上层数据的聚合程度越高,看上面的例子即可,ODS和DWD的数据基本是原始日志的粒度,不做任何聚合操作,DWM做了轻度的聚合操作只保留了通用的维度,DWS做了更高的聚合操作,可能只保留一到两个能表征当前描述主体的维度。从这个角度来看,我们又可以理解为我们是按照数据的聚合程度来划分数据层次的。

0x06 总结

数据分层的设计,在某种程度上也需要通过数据命名来体现,本文的核心在于讲解数据分层的思想和方法,后面会有单独的文章来分享该如何根据数据分层来设计数据表的命名规范。

参考链接:

数据仓库–通用的数据仓库分层方法 #nice,详细全面
https://www.cnblogs.com/itboys/p/10592871.html

【漫谈数据仓库】 如何优雅地设计数据分层
https://www.51cto.com/article/554810.html

[数据仓库]分层概念,ODS,DM,DWD,DWS,DIM的概念
https://www.cnblogs.com/yoyo008/p/15213829.html

人事系统数据仓库建设
https://help.fanruan.com/finedatalink/doc-view-207.html

=END=


《 “学习了解数据仓库中的分层概念” 》 有 3 条评论

  1. 维度表,实体表,事实表之间的关系
    https://www.cnblogs.com/itboys/p/10638665.html
    `
    这段时间在慢慢学习有关维度建模的一些东西,其中有个问题当时被老大挖了个坑就跳了进去几天都没爬出来,这个坑主要在于我对维度表,实体表,事实表这三种表之间的关系和概念认知比较模糊,当时老大要我去设计一个关于设备的维度和事实表及实体表出来时,结果我就真的去傻乎乎的对设备进行各种维度表和事实表的设计,然后在给老大看的时候各种被怼,最后才认知到设备怎么可能设计的出一个维度表呢,它本身就是一个客观存在的事实,我们是不可能去把一个客观存在的事实做成一个维度去分析的,维度建模中只存在通过各种维度去分析一个事实,而不能通过别的事实角度去分析另一个事实,如果存在这种结构,也应该是指标值(度量值)而不是一个维度。

    维度表:维度表可以看成是用户用来分析一个事实的窗口,它里面的数据应该是对事实的各个方面描述,比如时间维度表,它里面的数据就是一些日,周,月,季,年,日期等数据,维度表只能是事实表的一个分析角度。

    实体表:实体表就是一个实际对象的表,实体表它放的数据一定是一条条客观存在的事物数据,比如说设备 ,它就是客观存在的,所以可以将其设计一个实体表。

    事实表:事实表其实质就是通过各种维度和一些指标值得组合来确定一个事实的,比如通过时间维度,地域组织维度,指标值可以去确定在某时某地的一些指标值怎么样的事实。事实表的每一条数据都是几条维度表的数据和指标值交汇而得到的。
    `

  2. `
    一些(底层/临时)表名关键字:
    dim_user
    dim_crm_user

    dwd_employee

    employee_basic_info

    emp_info

    查询的SQL中包含多个以下关键字:
    employee
    department
    job
    leader

    id
    no
    number
    type
    name
    mail
    info
    level
    status

    join_date
    leave_date
    `

  3. employee的常用缩写 emp
    department的常用缩写 dept

    还有一种简单粗暴的方式,直接去历史SQL查询记录中搜索公司高管的名字、邮箱前缀等关键字,应该可以看到各种各样的表和SQL,你可以从这些实际的SQL里面提取一些组织架构表和敏感字段的关键字信息列表,然后逐步滚雪球,从而发现更多的公司内部敏感表、字段。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注